一、题目
给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。
‘.’ 匹配任意单个字符
‘*’ 匹配零个或多个前面的那一个元素
所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。
说明:
s 可能为空,且只包含从 a-z 的小写字母。
p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 *。
示例 1:
输入:
s = "aa"
p = "a"
输出: false
解释: "a" 无法匹配 "aa" 整个字符串。
示例 2:
输入:
s = "aa"
p = "a*"
输出: true
解释: 因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。
示例 3:
输入:
s = "ab"
p = ".*"
输出: true
解释: ".*" 表示可匹配零个或多个('*')任意字符('.')。
示例 4:
输入:
s = "aab"
p = "c*a*b"
输出: true
解释: 因为 '*' 表示零个或多个,这里 'c' 为 0 个, 'a' 被重复一次。因此可以匹配字符串 "aab"。
示例 5:
输入:
s = "mississippi"
p = "mis*is*p*."
输出: false
二、解决
1、递归
思路:
具体看参考2,然后可结合注释理解。
代码:
// V1.0
class Solution {
public boolean isMatch(String s, String p) {
// Terminator
if(p.isEmpty()) return s.isEmpty();
// 不涉及 "*" ,单元素匹配
boolean match = !s.isEmpty() && ((s.charAt(0) == p.charAt(0)) || p.charAt(0) == '.');
// 涉及 ”*“ ,多元素匹配。* 的作用是 消除前面字符p[j-1],或者复制>=1个字符p[j-1]
if(p.length() >= 2 && p.charAt(1) == '*') return isMatch(s, p.substring(2)) || (match && isMatch(s.substring(1), p));
return match && isMatch(s.substring(1), p.substring(1));
}
}
// V2.0:优化charAt(i),加速
class Solution {
public boolean isMatchChar(char[] s, int s1, char[] p, int p1) {
if(p1 >= p.length) return s1 >= s.length;
boolean match = s1 < s.length && ((s[s1] == p[p1]) || p[p1] == '.');
if(p.length - p1 >= 2 && p[p1 + 1] == '*') return isMatchChar(s, s1, p, p1 + 2) || (match && isMatchChar(s, s1 + 1, p, p1));
return match && isMatchChar(s, s1 + 1, p, p1 + 1);
}
public boolean isMatch(String s, String p) {
char[] ss = s.toCharArray(), pp = p.toCharArray();
return isMatchChar(ss, 0, pp, 0);
}
}
时间复杂度: O ( ( m + n ) ∗ 2 m + 2 n ) O((m+n)∗2^{m+ 2n}) O((m+n)∗2m+2n)
空间复杂度: O ( ( m + n ) ∗ 2 m + 2 n ) O((m+n)∗2^{m+ 2n}) O((m+n)∗2m+2n)
2、记忆化+递归
思路: 同上。
代码:
class Solution {
int[][] mem;
public boolean isMatchChar(char[] s, int s1, char[] p, int p1) {
if(p1 >= p.length) return s1 >= s.length;
if(mem[s1][p1] != 0) return mem[s1][p1] > 0;
boolean match = s1 < s.length && ((s[s1] == p[p1]) || p[p1] == '.');
if(p.length - p1 >= 2 && p[p1 + 1] == '*') {
boolean t = isMatchChar(s, s1, p, p1 + 2) || (match && isMatchChar(s, s1 + 1, p, p1));
if(t) mem[s1][p1] = 1;
else mem[s1][p1] = -1;
return t;
}
boolean t = match && isMatchChar(s, s1 + 1, p, p1 + 1);
if(t) mem[s1][p1] = 1;
else mem[s1][p1] = -1;
return t;
}
public boolean isMatch(String s, String p) {
this.mem = new int[s.length() + 1][p.length() + 1];
char[] ss = s.toCharArray(), pp = p.toCharArray();
return isMatchChar(ss, 0, pp, 0);
}
}
时间复杂度:
O
(
m
n
)
O(mn)
O(mn)
空间复杂度:
O
(
m
n
)
O(mn)
O(mn)
3、动态规划
思路:
1、状态定义
dp[i][j]:表示 S 的前 i 个能否被 P 的前 j 个字符匹配。
2、转移方程
dp[i][j]: S 的前 i 个字符成功匹配上 P 的前 j 个字符。
1、If p.charAt(j) == s.charAt(i)
Then dp[i][j] = dp[i-1][j-1];
2、If p.charAt(j) == '.'
Then dp[i][j] = dp[i-1][j-1];
3、If p.charAt(j) == '*':
If p.charAt(j-1) != s.charAt(i) :
Then dp[i][j] = dp[i][j-2] //in this case, a* only counts as empty
If p.charAt(j-1) == s.charAt(i) or p.charAt(j-1) == '.':
Then dp[i][j] = dp[i][j-2] // in this case, a* counts as empty
or dp[i][j] = dp[i][j-1] // in this case, a* counts as single a
or dp[i][j] = dp[i-1][j] // in this case, a* counts as multiple a
// 正向理解,如果代表多个,则 s 后面再添一个也不影响。
代码:
class Solution {
public boolean isMatch(String s, String p) {
if (s == null || p == null) {
return false;
}
boolean[][] dp = new boolean[s.length()+1][p.length()+1];
dp[0][0] = true;
for (int j = 1; j < p.length(); j++) {
if (p.charAt(j) == '*' && dp[0][j-1]) {
dp[0][j+1] = true;
}
}
for (int i = 0 ; i < s.length(); i++) {
for (int j = 0; j < p.length(); j++) {
if (p.charAt(j) == '.') {
dp[i+1][j+1] = dp[i][j];
}
if (p.charAt(j) == s.charAt(i)) {
dp[i+1][j+1] = dp[i][j];
}
if (p.charAt(j) == '*') {
if (p.charAt(j-1) != s.charAt(i) && p.charAt(j-1) != '.') {
dp[i+1][j+1] = dp[i+1][j-1];
} else {
dp[i+1][j+1] = dp[i+1][j-1]) || (dp[i+1][j] || dp[i][j+1];
}
}
}
}
return dp[s.length()][p.length()];
}
}
时间复杂度:
O
(
m
n
)
O(mn)
O(mn)
空间复杂度:
O
(
m
n
)
O(mn)
O(mn)
4、有限状态机
思路: 仅仅开拓思路,更多见参考3,具体略。
代码: 略。
时间复杂度: 略。
空间复杂度: 略。
三、参考
1、动态规划 - 从 0 讲解,大白话好理解
2、java递归一步一步的优化到击败100%,以及动态规划,思路清晰
3、10. Regular Expression Matching
4、正则表达式匹配
5、正则表达式匹配